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Conservative Remapper, or CORE, is a C++
language software library for remapping quan-
tities defined on unstructured two dimensional
grids. CORE contains implementations of two
remapping algorithms: a new, efficient “swept
region” algorithm, and a more traditional algo-
rithm based on the computation of cell intersec-
tions. Grids may be Cartesian or cylindrical,
and cells may have three or more vertices, with
no upper limit. CORE can run in serial and in
parallel, but in order to achieve wide applicabil-
ity, it uses no particular parallel communication
library. Instead, it achieves parallel communi-
cation through strategically placed, user-defined
callbacks. Users can also redefine different parts
of the remapping process by providing callbacks.
CORE allows for different data types, e.g. sin-
gle, double, and quad precision, through its use
of C++ templates. Using CORE is simple, and
requires no configuration scripts or makefiles.

Swept-Region Algorithm

The swept-region remapping algorithm [1]
achieves its goal by performing three stages,
which we will call density reconstruction, mass
exchange, and mass repair. This algorithm per-
forms well only if the new grid is a small pertur-
bation of the old grid.

For the density reconstruction stage, consider
that the mean cell densities obey some under-
lying, theoretical density function p. We don’t
know what p is, but if we assume it is piecewise
linear—one piece per cell—then we can use our
discrete mean densities to reconstruct a reason-
able candidate. For each cell, we consider a lin-
ear density function that achieves the cell’s mean
density at the cell’s center of volume. Then, we
use values of mean density in nearby cells to com-
pute a reasonable gradient for the function. With

Figure 1. Swept-region remapping. We deter-
mine which of its left and right cells an edge
sweeps into the most when it moves from the old
grid to the new grid.

a point and a gradient, we have our linear density
function for the cell.

For the mass exchange stage, consider that
each edge has two adjacent cells. For each edge,
we identify which cell the edge “moves into”
more when we go from the old grid to the new
grid. We then compute the integral of that cell’s
reconstructed density over the region swept by the
edge as it moves from its old position to its new
position. The resulting mass is removed from that
cell and added to the other one.

Consider Cell 4 in Figure 1. Its vertices move
from their positions on the old grid (dotted lines)
to their positions on the new grid (solid lines) as
shown by the arrows. Swept-region remapping
examines each of the grid’s edges. Consider Cell
4’s right edge, that is, the edge between Cell 4 and
Cell 5. The algorithm considers which of those
two cells the edge tends to sweep into when we
go from the old grid to the new grid. In this case,
the answer is Cell 5. So, the algorithm computes
a mass term by integrating Cell 5’s reconstructed
density function over the edge’s swept region: the
shaded region in the figure.

The fact that the swept region also intersects
with cells 2 and 8 is ignored by this algorithm.
Rather, the region “mostly” intersects with Cell
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5, and therefore, only Cell 5’s reconstructed den-
sity function is considered. The resulting mass is
removed from Cell 5 and added to Cell 4. (In gen-
eral, the cell that an edge sweeps into has its mass
reduced due to that edge’s movement, while the
cell that an edge sweeps out of has its mass in-
creased due to that edge’s movement.) The same
procedure is applied to each edge of the grid.

Finally, for the massrepair stage, we first rec-
ognize that the mass exchange stage involved in-
exact integration of the overall density function p,
in the sense that the mass exchange term was ob-
tained by computing the integral over the swept
region of the reconstructed density function on
one particular cell, even though the swept region
may have intersected other cells as well. This
made the algorithm efficient, because we did not
need to compute exact intersections of new cells
with old cells. However, as a result of inexact in-
tegration, new masses in individual cells can con-
ceivably violate appropriate bounds (for exam-
ple, a mass might be negative). The repair stage
fixes out-of-bounds masses while conserving to-
tal mass.

Exact-Intersection Algorithm
The exact-intersection remapping algorithm [2]

begins with the same density reconstruction
stage used in the swept-region algorithm. In this
stage, a reasonable piecewise linear density func-
tion is computed.

However, the mass exchange stage is now
quite different. Consider Cell 4 in Figure 2, which
moves from its position on the old grid (dot-
ted lines) to its position on the new grid (solid
lines) as shown by the arrows. (You can see that
this is the same grid we showed in Figure 1.)
Exact-intersection remapping examines each of
the grid’s cells. Cell 4 on the new grid intersects
with cells 1, 2, 4, 5, 7, and 8 on the old grid, as
shown by the shaded regions in the figure. So, the
algorithm computes Cell 4’s new mass by sum-
ming the integral of Cell 1’s reconstructed density
function over Cell 4°s intersection with old Cell 1,
the integral of Cell 2’s reconstructed density func-
tion over Cell 4’s intersection with old Cell 2, etc.

One might assume that the mass repair stage
is no longer necessary when we use exact-

Figure 2. Exact-intersection remapping. For
each cell on the new grid, we determine which
cellson the old grid it intersects with.

intersection remapping. After all, its purpose in
the swept-region algorithm is to repair out-of-
bounds masses that arise because swept regions
generally intersect not only with cells the edges
tend to move into the most, but with other nearby
cells as well, leading to inexact integration of
the reconstructed density function. However, if
we allow for the possibility that users will define
mass bounds in non-standard ways, then in princi-
ple, either remapping algorithm can produce out-
of-bounds masses. We therefore retain the mass
repair stage here.

The exact-intersection algorithm does not re-
quire that the new grid is a small perturbation of
the old grid.
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